Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
Indoor and Built Environment ; 2023.
Article Dans Anglais | Web of Science | ID: covidwho-2194549

Résumé

Air distribution system could critically affect SARS-CoV-2 transmission in indoor space;therefore, this study aims at demonstrating numerical characteristics of SARS-CoV-2 migration with varied air distribution system configurations. Seven cases were investigated regarding three major aspects: how fast suspended particles can be removed from the ventilated space or changed into deposited particles;how much particles are attached to various object surfaces which leads to an infection by touching fomite. All cases were analyzed through computational fluid dynamics (CFD). Both different shapes (round or linear diffusers) and installation locations (ceiling or floor) of inlet and outlet diffusers were investigated. Results showed that different air distribution system would lead to different dispersion profiles of infectious particles and different deposition pattern of particles on interior surfaces. With the same air flow rate, linear-diffuser would perform better for CO2 extraction while requiring less time to remove or collide the same magnitude of suspended droplets compared to round-diffuser. However, how quickly removed or suspended droplets collide is not proportional to how less the number of total particles are remained. Two additional cases with double sized space possessing best ventilation configuration were also examined to explore potential application of the best-ventilated configuration to various spatial expansion cases.

2.
Aerosol and Air Quality Research ; 21(8), 2021.
Article Dans Anglais | ProQuest Central | ID: covidwho-1771441

Résumé

In closed buses, the spread of droplets with viruses/bacteria may cause the spread of respiratory infectious diseases. Discrete phase modeling is used to simulate the diffusion characteristics and concentration distribution of droplets at different temperatures and different exhalation positions by ANSYS FLUENT software. The integral concentration of droplets at different locations can be quantified, which leads to identification of low-risk areas and high-risk areas in the bus. Results show that a higher outdoor temperature leads to lower droplets’ diffusion speed and longer time until the droplets reach the driver. In addition, based on the integral concentration of droplets at the seats, regardless of whether a passenger exhales droplets in the front row of the bus, the position of the rear door or the last row of the bus, the seats in the last row of the bus away from the door belong to the low-risk area. In contrast, the seats near the door and the middle seat in the bus are higher risk areas. Consequently, this study proposed sitting on a seat in the low-risk area as a means to reduce the risk of passengers. Moreover, safety protection facilities around the driver should be modified to improve the isolation of the upper area of the driver’s location, so as to effectively prevent the droplet diffusion towards the driver, thereby effectively reducing the driver’s risk of infection.

3.
Adsorption Science and Technology ; 2022, 2022.
Article Dans Anglais | Scopus | ID: covidwho-1685766

Résumé

Face coverings such as a face mask are one of the important preventive measures amidst the COVID-19 pandemic, by limiting exhaled particles and reducing expiratory droplet spread. Adding a filter to face masks may offer extra protection against the virus. Nevertheless, there remains a significant concern where thicker, tightly woven materials of masks may reduce the ability to breathe comfortably, due to inadequate moisture management properties of woven fabric in existing disposable surgical face masks. Therefore, the study on the properties of air permeability, water vapor permeability, and flexural rigidity of a face mask fabric is highly essential. This study is aimed at analyzing the potential application of electrospun nanofibers fabricated from electrospinning technique, as filter inserts in commercial surgical face masks. The function of electrospun nanofiber filter (NF) inserted in commercial surgical face masks was introduced in the study. The results indicated the significant reduction in air permeability and water vapor permeability along with the additional usage of electrospun NF within the surgical face masks, due to the smaller fiber size and interspaces in the filter layer as analyzed from FESEM analysis. The percentage of air permeability value was slightly decreased by 15.9%, from 339.5 to 285.5 mm/s, whereas the value of flexural rigidity of surgical face masks with and without electrospun NF insert is 0.1358 and 0.1207 mg/cm, respectively. Hence, the NF inserts are recommended as the potential core component in a face mask. © 2022 Fatirah Fadil et al.

SÉLECTION CITATIONS
Détails de la recherche